
Stephen Checkoway

Programming Abstractions
Lecture 14: Structs and keyword arguments

Data types

We need a way to store some fields and procedures to create and work with

instances of the type

Procedures

‣ Recognizers: Is this thing an object of type X?

‣ Constructors: Create an object of type X

‣ Accessors: Get field Y from an object of type X

Imagine you have a point data type with this constructor.

(define (point x y)

 (list x y))

What is wrong with this constructor, if anything?

A. The result cannot be

distinguished from a normal list

B. (point x y) should return a

closure (a lambda), not a list

C. (list x y) should be '(x y)

D. A and C

E. The constructor is correct

3

Imagine you have a point data type with this constructor and recognizer.

(define (point x y)

 (list 'point x y))

(define (point? obj)

 (eq? (first obj) 'point))

What is wrong with this recognizer?

A. It doesn't always return #t when

passed a point

B. It doesn't always return #f when

passed something other than a

point

C. eq? should be equal?

D. A and B

E. B and C

4

Imagine you have a point data type with this constructor and accessor.

(define (point x y)

 (list 'point x y))

(define (point-x p)

 (second p))

What is wrong with this accessor, if anything?

A. It doesn't return the x field of a

point

B. When called with something

that's not a point, it gives an

error rather than returning #f

C. When called with something

that's not a point, it doesn't give

an error

D. More than one of A, B, or C

E. Nothing is wrong with it

5

Example from last time: set

(define (set elements)

 (list 'set (remove-duplicates elements)))

(define (set? obj)

 (and (list? obj)

 (not (empty? obj))

 (eq? (first obj) 'set)))

(define (empty-set? obj)

 (and (set? obj)

 (empty? (second obj))))

(define (set-elements s)

 (if (set? s)

 (second s)

 (error 'set-elements "~v is not a set" s)))

(define empty-set (set empty))

Example: point

(define (point x y)

 (list 'point x y))

(define (point? obj)

 (and (list? obj)

 (not (empty? obj))

 (eq? (first obj) 'point)))

(define (point-x p)

 (cond [(set? p) (second p)]

 [else (error 'point-x "~v is not a point" p)]))

(define (point-y p)

 (cond [(set? p) (third p)]

 [else (error 'point-y "~v is not a point" p)]))

Too much repetitive code to write by hand
(struct name (field-a field-b) …)

Racket has a very general mechanism for creating structures and the associated

procedures

To create our point data type, we can instead use

(struct point (x y))

This will create a new type named point and the following procedures:

‣ (point x y) produces a new point with the given coordinates

‣ (point? obj) returns #t if obj is a point

‣ (point-x p) returns the x field

‣ (point-y p) returns the y field

Example point

(struct point (x y))

(define p (point 3 4))

(point? p) ; returns #t

(point? '(point 3 4)) ; returns #f

(point-x p) ; returns 3

(point-y p) ; returns 4

p ; DrRacket prints this as #<point>

1st problem: Hard to debug

(define (thing p)

 (cond [(negative? (point-x p))

 (error 'thing "Invalid point: ~s" p)]

 [else '...]))

(thing (point -3 2)) => thing: Invalid point: #<point>

2nd problem: Equality isn't structural equality

; With lists, equal? performs structural comparison

(equal? '(point 3 4) '(point 3 4)) => #t

; eq? asks if the arguments are the same object

(eq? '(point 3 4) '(point 3 4)) => #f

; With structs, equal? acts like eq? by default!

(equal? (point 3 4) (point 3 4)) => #f

Solve both by making the struct transparent

(struct point (x y) #:transparent)

(point 3 4) => (point 3 4) rather than #<point>

(equal? (point 3 4) (point 3 4)) => #t

#:transparent is a keyword argument

Aside: Keyword arguments

Procedures can take keyword arguments

Keyword argument are specified as #:name value

For example, sort has 2 required positional arguments and 2 optional keyword

arguments

Keyword arguments

Keyword arguments can be given in any order

‣ (foo 4 #:thing 8 10) and (foo #:thing 8 4 10) are the same

- Positional arguments are 4 and 10

- Keyword argument #:thing with value 8

Keyword arguments can have default values

‣ Keyword arguments almost always have default values

‣ For sort, the #:key keyword has a default value of (lambda (x) x) and

#:cache-keys? has default value #f

Sort example

(sort '(1 5 3 4) <) => '(1 3 4 5)

(sort (list (point 1 2) (point 0 5) (point 1 -1))

 <

 #:key point-x)

=> (list (point 0 5) (point 1 2) (point 1 -1))

This is equivalent to

(sort (list (point 1 2) (point 0 5) (point 1 -1))

 (λ (a b) (< (point-x a) (point-x b))))

Special forms can have keyword arguments

struct supports a variety of keyword arguments, including #:transparent

In some cases, the keyword arguments don't need values, they are aliases for

other keywords with specific values

For struct, #:transparent is the same as #:inspector #f

tree.rkt

tree.rkt

#lang racket

; Provide the procedures for working with trees.

(provide tree make-tree empty-tree

 tree? empty-tree? leaf?

 tree-value tree-children)

; Provide 8 example trees.

(provide empty-tree T1 T2 T3 T4 T5 T6 T7 T8)

Tree definition and a special value

; Definition of tree datatype

(struct tree (value children) #:transparent)

; An empty tree is represented by null

(define empty-tree null)

; (empty-tree? empty-tree) returns #t

(define empty-tree? null?)

; Convenience constructor

; (make-tree v c1 c2 ... cn) is equivalent to

; (tree v (list c1 c2 ... cn))

(define (make-tree value . children)

 (tree value children))

Utility procedure

; Returns #t if the tree is a leaf.

(define (leaf? t)

 (cond [(empty-tree? t) #f]

 [(not (tree? t)) (error 'leaf? "~s is not a tree" t)]

 [else (empty? (tree-children t))]))

Example trees

(define T1 (make-tree 50))

(define T2 (make-tree 22))

(define T3 (make-tree 10))

(define T4 (make-tree 5))

(define T5 (make-tree 17))

(define T6 (make-tree 73 T1 T2 T3))

(define T7 (make-tree 100 T4 T5))

(define T8 (make-tree 16 T6 T7))

A tree is represented as a struct (tree value children).

If you want to count how many children a particular (nonempty) tree t has,

what's the best way to do it?

A. (length (tree-children t))

B. (length (third t))

C. (length (rest t))

D. (length (rest (rest t)))

E. (length (caddr t))

23

Example: leaves

Let's write (leaves t) that takes a tree as input and returns a list of the

values of its leaves

